Record Details

Shock Waves in Cloud Cavitation

CaltechAUTHORS

View Archive Info
 
 
Field Value
 
Title Shock Waves in Cloud Cavitation
 
Creator Brennen, C. E.
Reisman, G. E.
Wang, Y.-C.
 
Subject Caltech Library Services
 
Description Thie paper described experimental and computational investigations of the dynamics of clouds of cavitation bubbles. Recent studies have confirmed that the interactions between bubbles as they are manifest in the dynamics of bubble clouds lead to generation of very large impulsive pressures which, in turn, cause substantial enhancement of the radiated noise and the material damage which results from this form of cavitation.

The experimental program focuses on cloud cavitation formed on the suction surface of a hydrofoil, both static and oscillating. Piezo-electric transducers mounted at a series of locations on the suction surface measured very large positive pressure pulses with amplitudesx of the order of tens of atmospheres and with durations of the order of tenths of milliseconds. Two distinct types of pressure pulse were identified from high-speed films: "local pulses" which are registered by individual transducers and appear to be associated with the propagation of localized bubbly shocks and "global pulses" which result from larger scale, coherent collapses of bubble clouds. The experiments investigate the effects of reduced frequency, cavitation number and tunnel velocity on the magnitude of these pressure pulses.

The computational component continues the earlier work of Wang and Brennen (1, 2), which presented numerical solutions of the growth and collapse of a spherical cloud of bubbles. This confirmed the idea put forward by Morch and his co-workers who speculated that collapse of the cloud involved the formation of a bubbly shock wave on the surface of the cloud and that inward propagation and geometric focussing of this shock would lead to very large localized pressure pulses. Here we review how the radiated acoustic pulses depend on the governing parameters such as the bubble population density, the cavitation number and the ratio of the bubble size to the cloud size.

Understanding such bubbly flow and shock wave processes is important because these flow structures propagate the noise and produce the impulsive loads on nearby solid surfaces in a cavitating flow. How these shocks are formed and propagate in the much more complex cloud geometry associated with cavitating foils, propeller or pump blades is not presently clear. However, by combining the computational and experimental observations, we suggest some specific mechanisms which may be active in the dynamics and acoustics of these more complex flows.
 
Publisher National Academy Press
 
Date 1997
 
Type Book Section
PeerReviewed
 
Format application/pdf
 
Identifier http://authors.library.caltech.edu/66/1/BRE165.pdf
Brennen, C. E. and Reisman, G. E. and Wang, Y.-C. (1997) Shock Waves in Cloud Cavitation. In: Twenty-First Symposium on Naval Hydrodynamics. National Academy Press , Washington, DC, pp. 756-771. ISBN 0-309-05879-1 http://resolver.caltech.edu/CaltechAUTHORS:BRE21snh97 <http://resolver.caltech.edu/CaltechAUTHORS:BRE21snh97>
 
Relation http://resolver.caltech.edu/CaltechAUTHORS:BRE21snh97
http://authors.library.caltech.edu/66/