Gravitational Waves in G4v
CaltechAUTHORS
View Archive InfoField | Value | |
Title |
Gravitational Waves in G4v
|
|
Creator |
Mead, Carver
|
|
Description |
Gravitational coupling of the propagation four-vectors of matter wave functions is formulated in at space-time. Coupling at the momentum level rather than at the "force-law" level greatly simplifies many calculations. This locally Lorentz-invariant approach (G4v) treats electromagnetic and gravitational coupling on an equal footing. Classical mechanics emerges from the incoherent aggregation of matter wave functions. The theory reproduces, to first order beyond Newton, the standard GR results for Gravity-Probe B, deflection of light by massive bodies, precession of orbits, gravitational red shift, and total gravitational-wave energy radiated by a circular binary system. Its predictions differ markedly from GR for the gravitational-wave radiation patterns from rotating massive systems, and for the LIGO antenna pattern. G4v predictions of total radiated energy from highly eccentric Kepler systems are slightly larger than those of similar GR treatments. A detailed treatment of the theory is in preparation. However the generation and detection of gravitational waves is exactly the same as the corresponding treatment for electromagnetic waves given in Collective Electrodynamics, (hereinafter referred to simply as CE) and therefore separable from the material in preparation. It therefore seems advisable to make the gravitational-wave material available, since its predictions should be testable as data from Advanced LIGO becomes available over the next few years. The presentation is somewhat more detailed than would be "normal," simply to make the approach clear and accessible to non-specialists. |
|
Date |
2015-03-16
|
|
Type |
Report or Paper
PeerReviewed |
|
Format |
application/pdf
|
|
Identifier |
http://authors.library.caltech.edu/59770/1/1503.04866v1.pdf
Mead, Carver (2015) Gravitational Waves in G4v. . (Submitted) http://resolver.caltech.edu/CaltechAUTHORS:20150819-134952067 <http://resolver.caltech.edu/CaltechAUTHORS:20150819-134952067> |
|
Relation |
http://resolver.caltech.edu/CaltechAUTHORS:20150819-134952067
http://authors.library.caltech.edu/59770/ |
|